9. Übung zu Physik für molekulare Biologie WS 2016/2017, 11.01.17

Die fehlenden Teile der Aufgabe 32 wird noch einmal in diesem Übungsblatt besprochen.

Druck-Volumenkurve für einen Luftballon

33) Die Druckdifferenz zwischen Innen- (p_i) und Außendruck p_a eines Luftballons wird im einfachsten Modell durch

$$p_i - p_a = \frac{\alpha}{r} \left\{ 1 - \left(\frac{r_o}{r}\right)^6 \right\}$$

beschrieben, dabei beschreibt die Konstante α die Elastizität des Ballons, während r_0 der Radius des nicht aufgeblasenen Luftballons ist und r der Ballonradius im aufgeblasenen Zustand.

- Welche Einheit hat die Konstante α?
- Bestimmen Sie die Extremwerte der Funktion.
- Diskutieren Sie das asymptotische Verhalten für $r \to \infty$. Skizzieren Sie den Verlauf der Druckdifferenz p_i - p_a als Funktion des Radius r des Ballons.

Spezifische Wärme

34) Ein Aluminiumdewargefäß der Masse m_1 =0.5 kg enthält m_2 =0.118 kg Wasser der Temperatur T_1 =20°C. Ein Eisenstab der Masse m_3 =0.2 kg und der Temperatur T_2 =75 °C wird nun in das Aluminiumgefäß gelegt. Welche Temperatur stellt sich ein, wenn Wärmeverluste zur Umgebung vernachlässigt werden können? c_{Al} =910 J/kg°C, c_{Fe} =470 J/kg°C, c_{H2O} =4190 J/kg°C.

Skalenabschätzungen

35) Schätzen Sie ab wie lange es dauert ein sibirisches Mammut von 8 Tonnen aufzutauen, wenn die Zeit für einen 5 kg Truthahn zwei Tage dauert. Hinweis:

Die Zeit folgt aus : $t \sim \frac{\text{aufzunehmende Wärme}}{}$

Fläche Temperaturgradient

- Wie skaliert die aufzunehmende Wärme mit der Masse des Objekts?
- Wie skaliert die Masse mit der Größe des Objekts?
- Wie skalieren Fläche und Temperaturgradient mit der Größe des Objekts?

Nehmen Sie an, dass Mammut und Truthahn in guter Näherung als Kugel beschrieben werden können.

<u>Transportprozesse</u> – <u>Instationäre Wärmeleitung</u> (Freiwillige Aufgabe)

Die instationäre Wärmeleitungsgleichung lautet : $c\rho \frac{\partial T(x,t)}{\partial t} = \lambda \frac{\partial^2 T(x,t)}{\partial x^2}$

• Zeigen Sie, dass $T(x,t) = T_0 + \Delta T \exp(-\sqrt{\frac{\omega}{2D}x}) \sin(\omega t - \sqrt{\frac{\omega}{2D}x})$ eine Lösung der

Wärmeleitungsgleichung darstellt. $D = \lambda/c\rho$ ist der Temperaturleitwert.

- Berechnen Sie die Eindringtiefe der "Temperaturwelle" $x_d = \sqrt{2D/\omega}$ sowohl für die täglichen als auch für die jährlichen Temperaturen.
 - Wählen Sie für den Temperaturleitwert $D_{Erdboden} \approx 5.2 \cdot 10^{-7} \text{m}^2/\text{s}$.
- Zeichnen Sie die Temperaturverteilung für die jährliche Temperaturschwankungen T(x,t) für t=0, $t=\pi/2\omega$, $t=\pi/\omega$, und $t=3\pi/2\omega$. Fertigen Sie die Skizze an für T_0 =5°C, ΔT =15°C. Erklären Sie hiermit, warum es in einem tiefen Weinkeller im Sommer angenehm kühl und im Winter nicht zu kalt wird.